
1

Load Level Modeling

R. Ernst
TU Braunschweig

2R. Ernst, TU Braunschweig, 2008

Software on MpSoC

• a growing number of microelectronic circuits are not designed for
a single final application

– no coherent initial specification

• a large part of the final system specification is delayed to a later
development process, including upgrades/updates

• software is used for end product diversification

– software architectures impose new challenges that affect hardware
design

• example

– automotive software standard AUTOSAR

3R. Ernst, TU Braunschweig, 2008

AUTOSAR

Source: www.autosar.org

4R. Ernst, TU Braunschweig, 2008

Consequences for ESL design

• automotive systems become software platforms

– no complete ECU function specification at application level

– partially defined and evolving system functionality

– mapping of software to platform remains open

– abstract requirements to robustness and scalability

• software is used for end product diversification

– new types of resilient multicore architectures will become interesting

– software only partially accessible to the hardware designer

• IP protection

• later upgrades must be planed in advance

→ ESL design process has to adapt

• AUTOSAR is just a highly visible example for general trends in
embedded systems design

5R. Ernst, TU Braunschweig, 2008

Many open questions

• if software issues dominate - what „system“ description is
available for system level MpSoC HW design?

– specification of final product only partially available

• what kind of SW development environment can be provided?

– determination of sensitivity to changes, updates

• what is an appropriate design representation if executable
specifications are not yet available?

→ need abstraction from detailed function (cp. benchmark)

6R. Ernst, TU Braunschweig, 2008

Modeling system load

• „load“ is used as an abstract description of execution

– running applications on platforms generates load

– load determines timing and power requirements

– load metrics can be used to describe system „reserve“

• load may be separated from functionality

– general idea behind schedulability analysis

– cp. previous presentations at MpSoC 2005, 2006, 2007, …
and other presentations at MpSoC 2008 (e.g. Thiele, van der Wolf)

• tools available

– academic (MPA – ETH, SymTA/S - TUBS)

– commercial (SymTA/S) of Symtavision (www.symtavision.com)

– regularly applied by Bosch, Volkswagen, BMW, General Motors, …

– currently mostly used for performance verification
• identify, check and present corner cases
• focus on worst case guarantees (verification!)

• worst case design is no limitation of load models!

7R. Ernst, TU Braunschweig, 2008

Load modeling fundamentals - Activation

• total task load, also called utilization of task i, Ui, depends on
activation function

total task load = load/task execution * task activation requency

= task core execution time * task activation frequency

– example: periodic task i with core execution time Ci and period Ti

Ui = Ci/Ti

• what defines the task activation function ?

– application model (Simulink, SPW, LabView, …)

– environment model (reactive systems)

– service contracts (max no of requests per time, …)

→ typically application rather than platform dependent

→ platform can „modulate“ activation timing to avoid malfunction (e.g.
traffic shaping, back pressure)

• two classes of activation – time activation, event activation

8R. Ernst, TU Braunschweig, 2008

Activation functions

• two classes of activation

• time activation – tasks are periodically activated by clock

• example: periodic sample in signal processing / control eng.

• event activation – tasks are activated when event arrives

• example: automata

S

C

B4

B2B1 B3
event
source

sample
clock

event activated

time activated

event
model

event/communication
model

activation functions - example

9R. Ernst, TU Braunschweig, 2008

Characterizing a software task for load modeling

• the load of a software process can be roughly estimated and
classified

– how many lines of code that function will require when implemented

– what time that implementation will take to be executed on a given
processor

• derived or estimated

• load model can handle error estimates (load sensitivity analysis
will tell potential effect of estimation error)

– what secondary communication and computation load will result from
a function execution

• number of memory accesses to instructions and data that load
buses and memories

• use of coprocessors and other units

10R. Ernst, TU Braunschweig, 2008

Load per software task execution

• examples for possible load estimations

– „after a boot scenario of 10ms, the SW process will always need 150us
per execution“ – scenario analysis

– „the SW process uses 50us or 20us, depending on whether it must
correct an error or not. Out of 10 executions, at most 1 error must be
corrected. In the first case, it will roughly need 10k memory accesses,
in the latter case no more than 5k. In any case, we may assume a
cache miss rate of 5% - load description

– „the SW process cycles through a sequence of four steps which will
take roughly 5us, 30us, 5us, 10us. It the first execution it loads a new
frame that takes 2k memory accesses, then it executes motion
estimation that takes a lot of time but has good locality and reaches
high cache hit rate, so we will only see some 500 misses.“ (cyclo-
static system) – load description

11R. Ernst, TU Braunschweig, 2008

Modeling software task execution load

executions

load
/us

WCET

maximum computation load
(window)

10000

20000

executions

load
/us

1 2 3 4 5

10000
20000

6 7 8 9 10

classical worst case
model

computation load
distribution (window)

„out of 5 executions,
2 may be 20ms,
2 take at most 10ms and
1 needs at most 5ms“

1 2 3 4 5 6 7 8 9 10

total load of software process
• related to execution
• no activation timing included

12R. Ernst, TU Braunschweig, 2008

Modeling secondary execution load

secondary maximum
communication

load (window)

executions

secondary
memory
transactions

WC comm.
load

2000

4000

6000

executions

load
/transactions

1 2 3 4 5 6 7 8 9 10

sec. com. load
distribution
(window)

…

• secondary communication and
computation load result from
memory and coprocessor
accesses (incl. cache misses)

• consequence of software
implementation rather than
application

• not further considered in this
presentation (see DATE
tutorial)

1 2 3 4 5 6 7 8 9 10

…

13R. Ernst, TU Braunschweig, 2008

Apply application timing - principle

• apply activation timing to obtain load distribution

event model
activations/time

task load model
load/activation

* load demand/time

executions

load
/ms

1 2 3 4 5 6 7 8 9 10 executions

load
/trans.

1 2 3 4 5 6 7

14R. Ernst, TU Braunschweig, 2008

Load model application – simple example

P = 20 ms

P = 30 ms

J = 40 ms

d = 5 ms

T_high:
cyclo static execution

1ms, 3ms, 4ms, 5ms

WCET = 5 ms

WCET = 20 ms

T_low:
„out of 5 executions, 2 may
be 20ms, 2 take at most
10ms and 1 has at most
5ms“

tool: SymTA/S

activation task load

15R. Ernst, TU Braunschweig, 2008

Task execution load

T_low

T_high

executions

executions

d
em

an
d

 (
m

s)
d

em
an

d
 (

m
s)

subadditive
load sequence

tool: SymTA/S

16R. Ernst, TU Braunschweig, 2008

Apply activation timing: T_low

d
em

an
d

 (
m

s)

Δt

activation:
period P = 10 ms
jitter J = 40 ms
min. dist. d = 5 ms

availa
ble processor t

im
e

17R. Ernst, TU Braunschweig, 2008

Total load demand/time: T_low + T_high

d
em

an
d

 (
m

s)

Δt

so far no system or resource sharing influence included

result using WCET only

18R. Ernst, TU Braunschweig, 2008

Apply resource sharing - principle

event model
activations/time

task load model
load/activation

*
load demand/time

executions

load
/ms

1 2 3 4 5 6 7 8 9 10 executions

load
/trans.

1 2 3 4 5 6 7

+

resource sharing
strategy

RTE overhead

total system
load and timing

19R. Ernst, TU Braunschweig, 2008

Apply resource sharing example

P = 20 ms

P = 30 ms

J = 40 ms

d = 5 ms

T_high:
cyclo static execution

1ms, 3ms, 4ms, 5ms

WCET = 5 ms

WCET = 20 ms

T_low:
„out of 5 executions, 2 may
be 20ms, 2 take at most
10ms and 1 has at most
5ms“

• scheduling strategy: static priority preemptive

– priority T_high > T_low

20R. Ernst, TU Braunschweig, 2008

Schedulability and response time analysis for T_low

T_high

T_low

20 ms 20 ms 10 ms 10 ms 5 ms

T_high

T_low

• estimated worst case response time WRCT = 47 ms (T_low)

• can include context switch, blocking times, …

resource idle tool: SymTA/S

21R. Ernst, TU Braunschweig, 2008

Conclusion

• formal performance modeling typically separates function from
timing

– currently mostly used for performance verification

• the modeling approach can be used to define an abstraction level
above TLM that describes platform load rather than individual
actions

• such a load model can work with rough load descriptions and
workload characterization

• the load model is compatible to application modeling

• showed simple example

22R. Ernst, TU Braunschweig, 2008

Overview formal methods for performance analysis

• see tutorial DATE 2008

– www.ida.ing.tu-bs.de/~ernst

