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Software on MpSoC

* agrowing number of microelectronic circuits are not designed for
a single final application

— no coherent initial specification

» alarge part of the final system specification is delayed to a later
development process, including upgrades/updates

» software is used for end product diversification
— software architectures impose new challenges that affect hardware
design
* example
— automotive software standard AUTOSAR
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AUTOSAR
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Consequences for ESL design

* automotive systems become software platforms
— no complete ECU function specification at application level
— partially defined and evolving system functionality
— mapping of software to platform remains open

— abstract requirements to robustness and scalability

» software is used for end product diversification
— new types of resilient multicore architectures will become interesting

— software only partially accessible to the hardware designer
» |P protection
» later upgrades must be planed in advance
— ESL design process has to adapt

* AUTOSAR s just a highly visible example for general trends in
embedded systems design
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Many open questions

» if software issues dominate - what , system* description is
available for system level MpSoC HW design?

— specification of final product only partially available

 what kind of SW development environment can be provided?

— determination of sensitivity to changes, updates

 what is an appropriate design representation if executable
specifications are not yet available?

— need abstraction from detailed function (cp. benchmark)
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Modeling system load

- ,load” is used as an abstract description of execution
— running applications on platforms generates load
— load determines timing and power requirements
— load metrics can be used to describe system ,reserve*

* |oad may be separated from functionality

— general idea behind schedulability analysis

— Ccp. previous presentations at MpSoC 2005, 2006, 2007, ...

and other presentations at MpSoC 2008 (e.g. Thiele, van der Wolf)

* tools available

— academic (MPA —ETH, SymTA/S - TUBS)

— commercial (SymTA/S) of Symtavision (www.symtavision.com)

— regularly applied by Bosch, Volkswagen, BMW, General Motors, ...

— currently mostly used for performance verification
» identify, check and present corner cases
» focus on worst case guarantees (verification!)

e worst case design is no limitation of load models!
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Load modeling fundamentals - Activation

+ total task load, also called utilization of task i, U;, depends on
activation function

total task load = load/task execution * task activation requency
= task core execution time * task activation frequency
— example: periodic task i with core execution time C, and period T,;
U, = C/T,

* what defines the task activation function ?
— application model (Simulink, SPW, LabView, ...)
— environment model (reactive systems)
— service contracts (max no of requests per time, ...)

— typically application rather than platform dependent

— platform can ,modulate” activation timing to avoid malfunction (e.g.
traffic shaping, back pressure)

* two classes of activation —time activation, event activation
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Activation functions

e two classes of activation

e time activation — tasks are periodically activated by clock
» example: periodic sample in signal processing / control eng.

e event activation — tasks are activated when event arrives
* example: automata
event/communication
model

event (:) % Q |
source uu] BL , B2 B

event
model

event activated

1 B4 sample

] clock
time activated

activation functions - example
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Characterizing a software task for load modeling

» theload of a software process can be roughly estimated and
classified

how many lines of code that function will require when implemented
what time that implementation will take to be executed on a given
processor

» derived or estimated

» load model can handle error estimates (load sensitivity analysis

will tell potential effect of estimation error)

what secondary communication and computation load will result from
a function execution

* number of memory accesses to instructions and data that load
buses and memories

» use of coprocessors and other units
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Load per software task execution

» examples for possible load estimations

»after aboot scenario of 10ms, the SW process will always need 150us
per execution* — scenario analysis

»the SW process uses 50us or 20us, depending on whether it must
correct an error or not. Out of 10 executions, at most 1 error must be
corrected. In the first case, it will roughly need 10k memory accesses,
in the latter case no more than 5k. In any case, we may assume a
cache miss rate of 5% - load description

»the SW process cycles through a sequence of four steps which will
take roughly 5us, 30us, 5us, 10us. It the first execution it loads a new
frame that takes 2k memory accesses, then it executes motion
estimation that takes a lot of time but has good locality and reaches
high cache hit rate, so we will only see some 500 misses.” (cyclo-
static system) — load description

R. Ernst, TU Braunschweig, 2008 10




Modeling software task execution load

load
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,out of 5 executions,
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classical worst case

total load of software process
* related to execution
* no activation timing included
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Modeling secondary execution load

* secondary communication and
computation load result from
memory and coprocessor
accesses (incl. cache misses)

* consequence of software
implementation rather than
application

 not further considered in this
presentation (see DATE
tutorial)
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Apply application timing - principle

» apply activation timing to obtain load distribution

event model s ;Q » load demand/time
activations/time T

task load model
load/activation
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Load model application — simple example

activation task load
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tool: SymTA/S
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Task execution load
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Apply activation timing: T_low
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Total load demand/time: T _low + T_high
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Apply resource sharing - principle
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event model uu ‘f’;\ ‘f-l-\ , total system
activations/time \I/ load and timing
task load model resource sharing
load/activation strategy
/ \ RTE overhead
load ] load
Ims /trans.

>
>

12345678910 executions

12345 6 7 executions

R. Ernst, TU Braunschweig, 2008 18




Apply resource sharing example

» scheduling strategy: static priority preemptive
— priority T_high > T _low

T_high:
cyclo static execution
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Schedulability and response time analysis for T_low
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» estimated worst case response time WRCT =47 ms (T_low)

* can include context switch, blocking times, ...
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Conclusion

» formal performance modeling typically separates function from
timing
— currently mostly used for performance verification

 the modeling approach can be used to define an abstraction level
above TLM that describes platform load rather than individual
actions

* such aload model can work with rough load descriptions and
workload characterization

* theload model is compatible to application modeling

* showed simple example
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Overview formal methods for performance analysis

e see tutorial DATE 2008

— www.ida.ing.tu-bs.de/~ernst
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