Load Level Modeling

R. Ernst
TU Braunschweig

Software on MpSoC

* agrowing number of microelectronic circuits are not designed for
a single final application

— no coherent initial specification

» alarge part of the final system specification is delayed to a later
development process, including upgrades/updates

» software is used for end product diversification
— software architectures impose new challenges that affect hardware
design
* example
— automotive software standard AUTOSAR

R. Ernst, TU Braunschweig, 2008 2

AUTOSAR

VFB view Source: www.autosar.org
sSw-C SW-C SW-C SW-C_
Description Descri]:lllion Description Description
i | b
L ;ﬁs urgg _Le
=] [=335
o2 || og b
A A a
Virtual Functional Bus
ECU .
s c
Descriptions l ys;:':ﬂﬂ::z:a'm

"-f(;o_l_s;- ortin ; -k_)._-B-I.';‘i-‘-
- ("-___ __of ;&' comgpongngfl_ o -v _ .|

T S ¥

=2

ECU 1 ECUN ECUm
= = = >
.23 %3 %3 =§§
2 % £ H

[re | [rre |

Basic Basic Basic
Software Soff Software

1 =

R. Ernst, TU Braunschweig, 2(3

Consequences for ESL design

* automotive systems become software platforms
— no complete ECU function specification at application level
— partially defined and evolving system functionality
— mapping of software to platform remains open

— abstract requirements to robustness and scalability

» software is used for end product diversification
— new types of resilient multicore architectures will become interesting

— software only partially accessible to the hardware designer
» |P protection
» later upgrades must be planed in advance
— ESL design process has to adapt

* AUTOSAR s just a highly visible example for general trends in
embedded systems design

R. Ernst, TU Braunschweig, 2008 4

Many open questions

» if software issues dominate - what , system* description is
available for system level MpSoC HW design?

— specification of final product only partially available

 what kind of SW development environment can be provided?

— determination of sensitivity to changes, updates

 what is an appropriate design representation if executable
specifications are not yet available?

— need abstraction from detailed function (cp. benchmark)

R. Ernst, TU Braunschweig, 2008

Modeling system load

- ,load” is used as an abstract description of execution
— running applications on platforms generates load
— load determines timing and power requirements
— load metrics can be used to describe system ,reserve*

* |oad may be separated from functionality

— general idea behind schedulability analysis

— Ccp. previous presentations at MpSoC 2005, 2006, 2007, ...

and other presentations at MpSoC 2008 (e.g. Thiele, van der Wolf)

* tools available

— academic (MPA —ETH, SymTA/S - TUBS)

— commercial (SymTA/S) of Symtavision (www.symtavision.com)

— regularly applied by Bosch, Volkswagen, BMW, General Motors, ...

— currently mostly used for performance verification
» identify, check and present corner cases
» focus on worst case guarantees (verification!)

e worst case design is no limitation of load models!

R. Ernst, TU Braunschweig, 2008

Load modeling fundamentals - Activation

+ total task load, also called utilization of task i, U;, depends on
activation function

total task load = load/task execution * task activation requency
= task core execution time * task activation frequency
— example: periodic task i with core execution time C, and period T,;
U, = C/T,

* what defines the task activation function ?
— application model (Simulink, SPW, LabView, ...)
— environment model (reactive systems)
— service contracts (max no of requests per time, ...)

— typically application rather than platform dependent

— platform can ,modulate” activation timing to avoid malfunction (e.g.
traffic shaping, back pressure)

* two classes of activation —time activation, event activation

R. Ernst, TU Braunschweig, 2008 7

Activation functions

e two classes of activation

e time activation — tasks are periodically activated by clock
» example: periodic sample in signal processing / control eng.

e event activation — tasks are activated when event arrives
* example: automata
event/communication
model

event (:) % Q |
source uu] BL , B2 B

event
model

event activated

1 B4 sample

] clock
time activated

activation functions - example

R. Ernst, TU Braunschweig, 2008 8

Characterizing a software task for load modeling

» theload of a software process can be roughly estimated and
classified

how many lines of code that function will require when implemented
what time that implementation will take to be executed on a given
processor

» derived or estimated

» load model can handle error estimates (load sensitivity analysis

will tell potential effect of estimation error)

what secondary communication and computation load will result from
a function execution

* number of memory accesses to instructions and data that load
buses and memories

» use of coprocessors and other units

R. Ernst, TU Braunschweig, 2008 9

Load per software task execution

» examples for possible load estimations

»after aboot scenario of 10ms, the SW process will always need 150us
per execution* — scenario analysis

»the SW process uses 50us or 20us, depending on whether it must
correct an error or not. Out of 10 executions, at most 1 error must be
corrected. In the first case, it will roughly need 10k memory accesses,
in the latter case no more than 5k. In any case, we may assume a
cache miss rate of 5% - load description

»the SW process cycles through a sequence of four steps which will
take roughly 5us, 30us, 5us, 10us. It the first execution it loads a new
frame that takes 2k memory accesses, then it executes motion
estimation that takes a lot of time but has good locality and reaches
high cache hit rate, so we will only see some 500 misses.” (cyclo-
static system) — load description

R. Ernst, TU Braunschweig, 2008 10

Modeling software task execution load

load
Jus maximum computation load
t (window)
20000 - - - WCET
10000 ceoe
12345678910 executions

I B I
load ﬂ — model

lus —

computation load

distribution (window)
20000
10000 >

12345678910 executions

THIL --e =2

,out of 5 executions,

2 may be 20ms,

2 take at most 10ms and
1 needs at most 5ms*

classical worst case

total load of software process
* related to execution
* no activation timing included

R. Ernst, TU Braunschweig, 2008

11

Modeling secondary execution load

* secondary communication and
computation load result from
memory and coprocessor
accesses (incl. cache misses)

* consequence of software
implementation rather than
application

 not further considered in this
presentation (see DATE
tutorial)

secondary
memory
transactions

secondary maximum
communication

load (window)

WC comm.

6000 load

4000
2000

12345678910

load ﬂ

/transactions

executions

sec. com. load
distribution
(window)

>
>

executions

12345678910

R. Ernst, TU Braunschweig, 2008

12

Apply application timing - principle

» apply activation timing to obtain load distribution

event model s ;Q » load demand/time
activations/time T

task load model
load/activation

7N\

load - load
/ms [trans.
LN N] LN N)
12345678910 executions 12345 67 executions

R. Ernst, TU Braunschweig, 2008 13

Load model application — simple example

activation task load

T_high:
cyclo static execution

®P=20ms 0 E1 0 ob I_)
’ / -} ol [Ims, 3ms, 4ms, bms J

Sourcel T_high WCET =5 ms

®P=30 ms
J= 40 ms T low:

f= 5 00 I_I‘| E0 + a »out of 5 executions, 2 may
= ms

be 20ms, 2 take at most
10ms and 1 has at most
5ms*

WCET =20 ms

Source2 T low
CPU

tool: SymTA/S

R. Ernst, TU Braunschweig, 2008 14

Task execution load

120
’J,)‘DD
E a0
T_low >
C a0
©
€ 4
© .
1 .
a
s 2 a3 B B) 1 @ 2)
executions tool: SymTA/S
= subadditive
— = load sequence
) == —
\E/ 24
H T =z
T_high c
- (B 18
£ x I
q') 12
o I l
executions
R. Ernst, TU Braunschweig, 2008 15

Apply activation timing: T_low

.25 | activation:

175
150
125

100

demand (ms)

period @=10ms
200 | Jitter J=

40 ms

min. dist. £=5ms

SIU ?IS '1lllﬂ 125 150 175 200 225

At

R. Ernst, TU Braunschweig, 2008 16

Total load demand/time: T _low + T_high

325
300 U_G_T—q7
275 -
250 - g
result using WCET only j
225 _
i S
=
= 175
©
8 150
5 j .
[}
T 125 -
100
75
50 ;
. - so far no system or resource sharing influence included
0 25 50 75 100 125 180 175 200 225 250 275 300 At
R. Ernst, TU Braunschweig, 2008 17
Apply resource sharing - principle
load demand/time
event model uu ‘f’;\ ‘f-l-\ , total system
activations/time \I/ load and timing
task load model resource sharing
load/activation strategy
/ \ RTE overhead
load] load
Ims /trans.

>
>

12345678910 executions

12345 6 7 executions

R. Ernst, TU Braunschweig, 2008 18

Apply resource sharing example

» scheduling strategy: static priority preemptive
— priority T_high > T _low

T_high:
cyclo static execution

B E1
P=20ms 00/ -} @ |—> 1ms, 3ms, 4ms, 5ms J

Sourcel T high WCET =5 ms
P=30ms
— T low:
J= 40ms o0 |_|‘I EQ ’ a ,out of 5 executions, 2 may
d= 5ms be 20ms, 2 take at most
10ms and 1 has at most
Source2 T_low 5ms*
cPu WCET =20 ms
R. Ernst, TU Braunschweig, 2008 19

Schedulability and response time analysis for T_low

20 ms 20 ms 10 ms 10 ms 5ms
A A
. . VS
Ii i i i
T_low [15 5] 11 a | = [10 |
1 2 swort: 47 = 4 a
T_high 0 b 0
[N] 10 20 =0 <H0 iEIII [={N] Fo =20 [=1n]
resource idle tool: SymTA/S
L T Vi S : : : f
Tlow | e weimen nwm T I e e B
7 9

2 ert: 47 3 4 3 E

B BB 1 @ B 8 1t ® B 8 1 & b

o 10 20 20 40 a0 =1} 70 20 an 100 40 1200 430 140 150 160 470 480 100 200 210 220 a0 240 250 t

» estimated worst case response time WRCT =47 ms (T_low)

* can include context switch, blocking times, ...

R. Ernst, TU Braunschweig, 2008 20

Conclusion

» formal performance modeling typically separates function from
timing
— currently mostly used for performance verification

 the modeling approach can be used to define an abstraction level
above TLM that describes platform load rather than individual
actions

* such aload model can work with rough load descriptions and
workload characterization

* theload model is compatible to application modeling

* showed simple example

R. Ernst, TU Braunschweig, 2008 21

Overview formal methods for performance analysis

e see tutorial DATE 2008

— www.ida.ing.tu-bs.de/~ernst

R. Ernst, TU Braunschweig, 2008 22

